Survey questions are often structured without regard for ease of use within a statistical model.
Take for example a survey done by the Centers for Disease Control (CDC) regarding child births in the U.S. One of the variables in the data set is “interval since last pregnancy”. Here is a histogram of the results.
(more…)
This webinar, presented by Yasamin Miller, will cover broadly survey design and planning.
It will outline the advantages and disadvantages of the various data collection modes, types of samples available to target your population, how to obtain a representative sample, and how to avoid the pitfalls of bad questionnaire design.
Note: This training is an exclusive benefit to members of the Statistically Speaking Membership Program and part of the Stat’s Amore Trainings Series. Each Stat’s Amore Training is approximately 90 minutes long.
(more…)
Author: Trent Buskirk, PhD.
As it is in history, literature, criminology and many other areas, context is important in statistics. Knowing from where your data comes gives clues about what you can do with that data and what inferences you can make from it.
In survey samples context is critical because it informs you about how the sample was selected and from what population it was selected. (more…)
Author: Trent Buskirk, PhD.
What do you do when you hear the word error? Do you think you made a mistake?
Well in survey statistics, error could imply that things are as they should be. That might be the best news yet–error could mean that things are as they should be.
Let’s break this down a bit more before you think this might be a typo or even worse, an error. (more…)