studentized

Member Training: The Multi-Faceted World of Residuals

July 1st, 2017 by

Most analysts’ primary focus is to check the distributional assumptions with regards to residuals. They must be independent and identically distributed (i.i.d.) with a mean of zero and constant variance.

Residuals can also give us insight into the quality of our models.

In this webinar, we’ll review and compare what residuals are in linear regression, ANOVA, and generalized linear models. Jeff will cover:

  • Which residuals — standardized, studentized, Pearson, deviance, etc. — we use and why
  • How to determine if distributional assumptions have been met
  • How to use graphs to discover issues like non-linearity, omitted variables, and heteroskedasticity

Knowing how to piece this information together will improve your statistical modeling skills.


Note: This training is an exclusive benefit to members of the Statistically Speaking Membership Program and part of the Stat’s Amore Trainings Series. Each Stat’s Amore Training is approximately 90 minutes long.

(more…)


Incorporating Graphs in Regression Diagnostics with Stata

May 24th, 2016 by

Stage 2You put a lot of work into preparing and cleaning your data. Running the model is the moment of excitement.

You look at your tables and interpret the results. But first you remember that one or more variables had a few outliers. Did these outliers impact your results? (more…)