Despite modern concerns about how to handle big data, there persists an age-old question: What can we do with small samples?
Sometimes small sample sizes are planned and expected. Sometimes not. For example, the cost, ethical, and logistical realities of animal experiments often lead to samples of fewer than 10 animals.
Other times, a solid sample size is intended based on a priori power calculations. Yet recruitment difficulties or logistical problems lead to a much smaller sample. In this webinar, we will discuss methods for analyzing small samples. Special focus will be on the case of unplanned small sample sizes and the issues and strategies to consider.
Note: This training is an exclusive benefit to members of the Statistically Speaking Membership Program and part of the Stat’s Amore Trainings Series. Each Stat’s Amore Training is approximately 90 minutes long.
(more…)
The first real data set I ever analyzed was from my senior honors thesis as an undergraduate psychology major. I had taken both intro stats and an ANOVA class, and I applied all my new skills with gusto, analyzing every which way.
It wasn’t too many years into graduate school that I realized that these data analyses were a bit haphazard and not at all well thought out. 20 years of data analysis experience later and I realized that’s just a symptom of being an inexperienced data analyst.
But even experienced data analysts can get off track, especially with large data sets with many variables. It’s just so easy to try one thing, then another, and pretty soon you’ve spent weeks getting nowhere.
(more…)