S-Plus

Specifying Fixed and Random Factors in Mixed Models

January 10th, 2022 by

One of the difficult decisions in mixed modeling is deciding which factors are fixed and which are random. And as difficult as it is, it’s also very important. Correctly specifying the fixed and random factors of the model is vital to obtain accurate analyses.

Now, you may be thinking of the fixed and random effects in the model, rather than the factors themselves, as fixed or random. If so, remember that each term in the model (factor, covariate, interaction or other multiplicative term) has an effect. We’ll come back to how the model measures the effects for fixed and random factors.

Sadly, the definitions in many texts don’t help much with decisions to specify factors as fixed or random. Textbook examples are often artificial and hard to apply to the real, messy data you’re working with.

Here’s the real kicker. The same factor can often be fixed or random, depending on the researcher’s objective. (more…)


Multiple Imputation in a Nutshell

September 20th, 2021 by

Imputation as an approach to missing data has been around for decades.

stage-3

You probably learned about mean imputation in methods classes, only to be told to never do it for a variety of very good reasons. Mean imputation, in which each missing value is replaced, or imputed, with the mean of observed values of that variable, is not the only type of imputation, however. (more…)


SPSS, SAS, R, Stata, JMP? Choosing a Statistical Software Package or Two

March 16th, 2009 by

In addition to the five listed in this title, there are quite a few other options, so how do you choose which statistical software to use?

The default is to use whatever software they used in your statistics class–at least you know the basics.

And this might turn out pretty well, but chances are it will fail you at some point. Many times the stat package used in a class is chosen for its shallow learning curve, (more…)