Designing experiments would always be simple if we could just randomly assign subjects to different treatment conditions with no other restrictions. Unfortunately, that doesn’t always work.
For example, there are many experimental situations where the subjects aren’t independent of each other. The subjects that are related to each other are combined into clusters called “blocks.” It can happen due to practicalities of running an experiment efficiently or you can intentionally plan it as a way to reduce random variance.
In either case, this is a randomized complete block design. It’s a great design to become familiar with because it will greatly expand your ability to create and analyze experiments.
How It Works
When you have subjects that share characteristics with one another, it can sometimes be difficult to isolate those characteristics directly. This makes it hard to record them as additional variables. By identifying the subjects that are similar, you can still capture how those characteristics affect the outcome. Subjects that are similar are grouped into “blocks.”
From there, you can make treatment assignments so that you put subjects from the same block into different treatment groups.
Why different treatment groups? Suppose subjects from the same block were assigned to the same treatment group. (more…)