Are you learning Multilevel Models? Do you feel ready? Or in over your head?
It’s a very common analysis to need to use. I have to say, learning it is not so easy on your own. The concepts of random effects are hard to wrap your head around and there is a ton of new vocabulary and notation. Sadly, this vocabulary and notation is not consistent across articles, books, and software, so you end up having to do a lot of translating.
(more…)
When you hear about multilevel models or mixed models, you very often think of a nested design. Level 1 units nested in Level 2 units, which are in turn possibly nested in Level 3 units. But these variables that define the units and that become random factors in the model can, in fact, be crossed with each other, not nested.
(more…)
One of the difficult decisions in mixed modeling is deciding which factors are fixed and which are random. And as difficult as it is, it’s also very important. Correctly specifying the fixed and random factors of the model is vital to obtain accurate analyses.
Now, you may be thinking of the fixed and random effects in the model, rather than the factors themselves, as fixed or random. If so, remember that each term in the model (factor, covariate, interaction or other multiplicative term) has an effect. We’ll come back to how the model measures the effects for fixed and random factors.
Sadly, the definitions in many texts don’t help much with decisions to specify factors as fixed or random. Textbook examples are often artificial and hard to apply to the real, messy data you’re working with.
Here’s the real kicker. The same factor can often be fixed or random, depending on the researcher’s objective. (more…)
What’s the difference between Mixed and Multilevel Models? What about Hierarchical Models or Random Effects models?
I get this question a lot.
The answer: very little.
(more…)
A Gentle Introduction to Random Slopes in Multilevel Modeling
…aka, how to look at cool interaction effects for nested data.
Do the words “random slopes model” or “random coefficients model” send shivers down your spine? These words don’t have to be so ominous. Journal editors are increasingly asking researchers to analyze their data using this particular approach, and for good reason.
(more…)
In this Stat’s Amore Training, Marc Diener will help you make sense of the strange terms and symbols that you find in studies that use multilevel modeling (MLM). You’ll learn about the basic ideas behind MLM, different MLM models, and a close look at one particular model, known as the random intercept model. A running example will be used to clarify the ideas and the meaning of the MLM results.
(more…)