generalized linear models

Member Training: Generalized Linear Models

September 3rd, 2018 by
In this webinar, we will provide an overview of generalized linear models. You may already be using them (perhaps without knowing it!).
For example, logistic regression is a type of generalized linear model that many people are already familiar with. Alternatively, maybe you’re not using them yet and you are just beginning to understand when they might be useful to you.

Member Training: The Multi-Faceted World of Residuals

July 1st, 2017 by

Most analysts’ primary focus is to check the distributional assumptions with regards to residuals. They must be independent and identically distributed (i.i.d.) with a mean of zero and constant variance.

Residuals can also give us insight into the quality of our models.

In this webinar, we’ll review and compare what residuals are in linear regression, ANOVA, and generalized linear models. Jeff will cover:

  • Which residuals — standardized, studentized, Pearson, deviance, etc. — we use and why
  • How to determine if distributional assumptions have been met
  • How to use graphs to discover issues like non-linearity, omitted variables, and heteroskedasticity

Knowing how to piece this information together will improve your statistical modeling skills.


Note: This training is an exclusive benefit to members of the Statistically Speaking Membership Program and part of the Stat’s Amore Trainings Series. Each Stat’s Amore Training is approximately 90 minutes long.

(more…)


The Difference Between Logistic and Probit Regression

May 12th, 2017 by

One question that seems to come up pretty often is:

What is the difference between logistic and probit regression?

 

Well, let’s start with how they’re the same:

Both are types of generalized linear models. This means they have this form:

glm
(more…)


Zero One Inflated Beta Models for Proportion Data

March 16th, 2016 by

Proportion and percentage data are tricky to analyze.

Much like count data, they look like they should work in a linear model.

They’re numerical.  They’re often continuous.

And sometimes they do work.  Some proportion data do look normally distributed so estimates and p-values are reasonable.

But more often they don’t. So estimates and p-values are a mess.  Luckily, there are other options. (more…)


What R Commander Can do in R Without Coding–More Than You Would Think

October 19th, 2015 by

I received a question recently about R Commander, a free R package.

R Commander overlays a menu-based interface to R, so just like SPSS or JMP, you can run analyses using menus.  Nice, huh?

The question was whether R Commander does everything R does, or just a small subset.

Unfortunately, R Commander can’t do everything R does. Not even close.

But it does a lot. More than just the basics.

So I thought I would show you some of the things R Commander can do entirely through menus–no programming required, just so you can see just how unbelievably useful it is.

Since R commander is a free R package, it can be installed easily through R! Just type install.packages("Rcmdr") in the command line the first time you use it, then type library("Rcmdr") each time you want to launch the menus.

Data Sets and Variables

Import data sets from other software:

  • SPSS
  • Stata
  • Excel
  • Minitab
  • Text
  • SAS Xport

Define Numerical Variables as categorical and label the values

Open the data sets that come with R packages

Merge Data Sets

Edit and show the data in a data spreadsheet

Personally, I think that if this was all R Commander did, it would be incredibly useful. These are the types of things I just cannot remember all the commands for, since I just don’t use R often enough.

Data Analysis

Yes, R Commander does many of the simple statistical tests you’d expect:

  • Chi-square tests
  • Paired and Independent Samples t-tests
  • Tests of Proportions
  • Common nonparametrics, like Friedman, Wilcoxon, and Kruskal-Wallis tests
  • One-way ANOVA and simple linear regression

What is surprising though, is how many higher-level statistics and models it runs:

  • Hierarchical and K-Means Cluster analysis (with 7 linkage methods and 4 options of distance measures)
  • Principal Components and Factor Analysis
  • Linear Regression (with model selection, influence statistics, and multicollinearity diagnostic options, among others)
  • Logistic regression for binary, ordinal, and multinomial responses
  • Generalized linear models, including Gamma and Poisson models

In other words–you can use R Commander to run in R most of the analyses that most researchers need.

Graphs

A sample of the types of graphs R Commander creates in R without you having to write any code:

  • QQ Plots
  • Scatter plots
  • Histograms
  • Box Plots
  • Bar Charts

The nice part is that it does not only do simple versions of these plots.  You can, for example, add regression lines to a scatter plot or run histograms by a grouping factor.

If you’re ready to get started practicing, click here to learn about making scatterplots in R commander, or click here to learn how to use R commander to sample from a uniform distribution.

 


Generalized Linear Models in R, Part 7: Checking for Overdispersion in Count Regression

August 27th, 2015 by

In my last blog post we fitted a generalized linear model to count data using a Poisson error structure.

We found, however, that there was over-dispersion in the data – the variance was larger than the mean in our dependent variable.

(more…)