eigenvalue

One of the Many Advantages to Running Confirmatory Factor Analysis with a Structural Equation Model

February 23rd, 2020 by

Based on questions I’ve been asked by clients, most analysts prefer using the factor analysis procedures in their general statistical software to run a confirmatory factor analysis.

While this can work in some situations, you’re losing out on some key information you’d get from a structural equation model. This article highlights one of these.

(more…)


Four Common Misconceptions in Exploratory Factor Analysis

June 5th, 2018 by

Today, I would like to briefly describe four misconceptions that I feel are commonly perceived by novice researchers in Exploratory Factor Analysis:

Misconception 1: The choice between component and common factor extraction procedures is not so important.

In Principal Component Analysis, a set of variables is transformed into a smaller set of linear composites known as components. This method of analysis is essentially a method for data reduction.

(more…)


Three Tips for Principal Component Analysis

June 14th, 2013 by

Principal Component Analysis (PCA) is a handy statistical tool to always have available in your data analysis tool belt.

It’s a data reduction technique, which means it’s a way of capturing the variance in many variables in a smaller, easier-to-work-with set of variables.

There are many, many details involved, though, so here are a few things to remember as you run your PCA.

1. The goal of PCA is to summarize the correlations among a set of observed variables with a smaller set of linear (more…)