communicate results

Member Training: Writing Up Statistical Results: Basic Concepts and Best Practices

July 1st, 2019 by

Many of us love performing statistical analyses but hate writing them up in the Results section of the manuscript. We struggle with big-picture issues (What should I include? In what order?) as well as minutia (Do tables have to be double-spaced?). (more…)


Confusing Statistical Terms #11: Confounder

June 26th, 2019 by

What is a Confounder?

Confounder (also called confounding variable) is one of those statistical terms that confuses a lot of people. Not because it represents a confusing concept, but because of how it’s used.

(Well, it’s a bit of a confusing concept, but that’s not the worst part).

It has slightly different meanings to different types of researchers. The definition is essentially the same, but the research context can have specific implications for how that definition plays out.

If the person you’re talking to has a different understanding of what it means, you’re going to have a confusing conversation.

Let’s take a look at some examples to unpack this.

(more…)


Member Training: Communicating Statistical Results to Non-Statisticians

January 2nd, 2017 by

One of the biggest challenges that data analysts face is communicating statistical results to our clients, advisors, and colleagues who don’t have a statistics background.

Unfortunately, the way that we learn statistics is not usually the best way to communicate our work to others, and many of us are left on our own to navigate what is arguably the most important part of our work.

In this webinar, we will cover how to: (more…)


Member Training: Communicating Statistical Results: When to Use Tables vs Graphs to Tell the Data’s Story

May 1st, 2016 by

In this webinar, we’ll discuss when tables and graphs are (and are not) appropriate and how people engage with each of these media.

Then we’ll discuss design principles for  good tables and graphs and review examples that meet these principles. Finally, we’ll show that the choice between tables and graphs is not always dichotomous: tables can be incorporated into graphs and vice versa. 

Participants will learn how to bring more thoughtfulness to the process of deciding when to use tables and when to use graphs in their work. They will also learn about design principles and examples they can adopt to create better tables and graphs.


Note: This training is an exclusive benefit to members of the Statistically Speaking Membership Program and part of the Stat’s Amore Trainings Series. Each Stat’s Amore Training is approximately 90 minutes long.

(more…)


When To Fight For Your Analysis and When To Jump Through Hoops

February 14th, 2012 by

In the world of data analysis, there’s not always one clearly appropriate statistical analysis for every research question.

There are so many issues to take into account.  They include the research question to be answered, the measurement of the variables, the study design, data limitations and issues, the audience, practical constraints like software availability, and the purpose of the data analysis.

So what do you do when a reviewer rejects your choice of data analysis? This reviewer can be your boss, your dissertation committee, a co-author, or journal reviewer or editor.

What do you do?

There are ultimately only two choices: You can redo the analysis their way. Or you can fight for your analysis. How do you choose?

The one absolute in this choice is that you have to honor the integrity of your data analysis and yourself.

Do not be persuaded to do an analysis that will produce inaccurate or misleading results, especially when readers will actually make decisions based on these results. (If no one will ever read your report, this is less crucial).

But even within that absolute, there are often choices. Keep in mind the two goals in data analysis:

  1. The analysis needs to accurately reflect the limits of the design and the data, while still answering the research question.
  2. The analysis needs to communicate the results to the audience.

When to fight for your analysis

So first and foremost, if your reviewer is asking you to do an analysis that does not appropriately take into account the design or the variables, you need to fight.

For example, a few years ago I worked with a researcher who had a study with repeated measurements on the same individuals. It had a small sample size and an unequal number of observations on each individual.

It was clear that to take into account the design and the unbalanced data, the appropriate analysis was a linear mixed model.

The researcher’s co-author questioned the use of the linear mixed model, mainly because he wasn’t familiar with it. He thought the researcher was attempting something fishy. His suggestion was to use an ad hoc technique of averaging over the multiple observations for each subject.

This was a situation where fighting was worth it.

Unnecessarily simplifying the analysis to please people who were unfamiliar with an appropriate method was not an option. The simpler model would have violated assumptions.

This was particularly important because the research was being submitted to a high-level journal.

So it was the researcher’s job to educate not only his coauthor, but the readers, in the form of explaining the analysis and its advantages, with citations, right in the paper.

When to Jump through Hoops

In contrast, sometimes the reviewer is not really asking for a completely different analysis. They just want a different way of running the same analysis or reporting different specific statistics.

For example a simple confirmatory factor analysis can be run in standard statistical software like SAS, SPSS, or Stata using a factor analysis command. Or it can be run it in structural equation modeling software like Amos or MPlus or using an SEM command in standard software.

The analysis is essentially the same, but the two types of software will report different statistics.

If your committee members are familiar with structural equation modeling, they probably want to see the type of statistics that structural equation modeling software will report. Running it this way has advantages.

These include overall model fit statistics like RMSEA or model chi-squares.

This is a situation where it may be easier, and produces no ill-effects, to jump through the hoop.

Running the analysis in the software they prefer won’t violate any assumptions or produce inaccurate results. This assumes you have access to that software and know how to use it.

If the reviewer can stop your research in its tracks, it may be worth it to rerun the analysis to get the statistics they want to see reported.

You do have to decide whether the cost of jumping through the hoop, in terms of time, money, and emotional energy, is worth it.

If the request is relatively minor, it usually is. If it’s a matter of rerunning every analysis you’ve done to indulge a committee member’s pickiness, it may be worth standing up for yourself and your analysis.

When you can’t talk to the reviewer

When you’re dealing with anonymous reviewers, the situation can get sticky.  After all, you cannot ask them to clarify their concerns. And you have limited opportunities to explain the reasons for choosing your analysis.

It may be harder to discern if they are being overly picky, don’t understand the statistics themselves, or have a valid point.

If you choose to stand up for yourself, be well armed. Research the issue until you are absolutely confident in your approach (or until you’re convinced that you were missing something).

A few hours in the library or talking with a trusted expert is never a wasted investment. Compare that to running an unpublishable analysis to please a committee member or coauthor.

Often, the problem is actually not in the analysis you did, but in the way you explained it. It’s your job to explain why the analysis is appropriate and, if it’s unfamiliar to readers, what it does.

Rewrite that section, making it very clear. Ask someone to review it. Cite other research that uses or explains that statistical method.

Whatever you choose, be confident that you made the right decision, then move on.