Member Training: Mixture Models in Longitudinal Data Analysis

This webinar will present the steps to apply a type of latent class analysis on longitudinal data commonly known as growth mixture model (GMM). This family of models is a natural extension of the latent variable model. GMM combines longitudinal data analysis and Latent Class Analysis to extract the probabilities of each case to belong to latent trajectories with different model parameters. A brief (not exhaustive) list of steps to prepare, analyze and interpret GMM will be presented. A published case will be described to exemplify an application of GMM and its complexity.

Finally, an alternative approach to GMM will be presented where the longitudinal model approach is linear mixed effects (also known as hierarchical linear model or multilevel modeling). The idea is the same as in GMM using growth curve modeling, mainly that the latent class membership specifies specific unobserved trajectories. These models are equivalent to GMM and are sometimes referred to heterogeneous linear mixed effects, underlining the idea that the sample may not belong to one single homogeneous population, but potentially to a mixture of distributions.


Note: This training is an exclusive benefit to members of the Statistically Speaking Membership Program and part of the Stat’s Amore Trainings Series. Each Stat’s Amore Training is approximately 90 minutes long.

Not a Member? Join!

About the Instructor

E. Manolo Romero Escobar is a Senior Psychometrician at Multi-Health Systems, Inc., a psychological test publishing company in Toronto.

Before working as a psychometrician, he worked extensively as a research and statistical consultant for faculty members, students at York University, and a variety of clients including health researchers, imaging clinics, educational institutions, and the Ontario government.

He has extensive expertise in factor analytical and latent-trait methods of measurement, as well as applications of linear mixed effects to nested, longitudinal, unbalanced data.

Manolo is passionate about the implementation of technology as an educational, learning, and training tool. He is an Excel, SPSS, and Mplus power user, and a supporter of the expanding use of the R language and environment for statistical computing.

Not a Member Yet?
It’s never too early to set yourself up for successful analysis with support and training from expert statisticians.

Just head over and sign up for Statistically Speaking.

You'll get access to this training webinar, 130+ other stats trainings, a pathway to work through the trainings that you need — plus the expert guidance you need to build statistical skill with live Q&A sessions and an ask-a-mentor forum.

Reader Interactions


Leave a Reply

Your email address will not be published. Required fields are marked *

Please note that, due to the large number of comments submitted, any questions on problems related to a personal study/project will not be answered. We suggest joining Statistically Speaking, where you have access to a private forum and more resources 24/7.