In this Stat’s Amore Training, Marc Diener will help you make sense of the strange terms and symbols that you find in studies that use multilevel modeling (MLM). You’ll learn about the basic ideas behind MLM, different MLM models, and a close look at one particular model, known as the random intercept model. A running example will be used to clarify the ideas and the meaning of the MLM results.
(more…)

The last, and sometimes hardest, step for running any statistical model is writing up results.
As with most other steps, this one is a bit more complicated for structural equation models than it is for simpler models like linear regression.
Any good statistical report includes enough information that someone else could replicate your results with your data.
(more…)
Predicting future outcomes, the next steps in a process, or the best choice(s) from an array of possibilities are all essential needs in many fields. The predictive model is used as a decision making tool in advertising and marketing, meteorology, economics, insurance, health care, engineering, and would probably be useful in your work too! (more…)
There are a number of simplistic methods available for tackling the problem of missing data. Unfortunately there is a very high likelihood that each of these simplistic methods introduces bias into our model results.
Multiple imputation is considered to be the superior method of working with missing data. It eliminates the bias introduced by the simplistic methods in many missing data situations.
(more…)
One of the key concepts in Survival Analysis is the Hazard Function.
But like a lot of concepts in Survival Analysis, the concept of “hazard” is similar, but not exactly the same as, its meaning in everyday English. Since it’s so important, though, let’s take a look. (more…)
Meta-analysis is the quantitative pooling of data from multiple studies. Meta-analysis done well has many strengths, including statistical power,
precision in effect size estimates, and providing a summary of individual studies.
But not all meta-analyses are done well. The three threats to the validity of a meta-analytic finding are heterogeneity of study results, publication bias, and poor individual study quality.
(more…)