Stage 2

Member Training: Small Sample Statistics

August 1st, 2016 by

Despite modern concerns about how to handle big data, there persists an age-old question: What can we do with small samples?

Sometimes small sample sizes are planned and expected.  Sometimes not. For example, the cost, ethical, and logistical realities of animal experiments often lead to samples of fewer than 10 animals.

Other times, a solid sample size is intended based on a priori power calculations. Yet recruitment difficulties or logistical problems lead to a much smaller sample. In this webinar, we will discuss methods for analyzing small samples.  Special focus will be on the case of unplanned small sample sizes and the issues and strategies to consider.


Note: This training is an exclusive benefit to members of the Statistically Speaking Membership Program and part of the Stat’s Amore Trainings Series. Each Stat’s Amore Training is approximately 90 minutes long.

(more…)


Member Training: Communicating Statistical Results: When to Use Tables vs Graphs to Tell the Data’s Story

May 1st, 2016 by

In this webinar, we’ll discuss when tables and graphs are (and are not) appropriate and how people engage with each of these media.

Then we’ll discuss design principles for  good tables and graphs and review examples that meet these principles. Finally, we’ll show that the choice between tables and graphs is not always dichotomous: tables can be incorporated into graphs and vice versa. 

Participants will learn how to bring more thoughtfulness to the process of deciding when to use tables and when to use graphs in their work. They will also learn about design principles and examples they can adopt to create better tables and graphs.


Note: This training is an exclusive benefit to members of the Statistically Speaking Membership Program and part of the Stat’s Amore Trainings Series. Each Stat’s Amore Training is approximately 90 minutes long.

(more…)


Member Training: Transformations & Nonlinear Effects in Linear Models

May 7th, 2015 by

Why is it we can model non-linear effects in linear regression?

What the heck does it mean for a model to be “linear in the parameters?” (more…)


Linear Models in R: Plotting Regression Lines

April 10th, 2015 by

Stage 2Today let’s re-create two variables and see how to plot them and include a regression line. We take height to be a variable that describes the heights (in cm) of ten people. (more…)


Member Training: ANCOVA (Analysis of Covariance)

January 1st, 2015 by

Analysis of Covariance (ANCOVA) is a type of linear model that combines the best abilities of linear regression with the best of Analysis of Variance.Stage 2

It allows you to test differences in group means and interactions, just like ANOVA, while covarying out the effect of a continuous covariate.

Through examples and graphs, we’ll talk about what it really means to covary out the effect of a continuous variable and how to interpret results.

Primary to the discussion will be when ANCOVA is and is not appropriate and how correlations and interactions between the covariate and the independent variables affect interpretation.


Note: This training is an exclusive benefit to members of the Statistically Speaking Membership Program and part of the Stat’s Amore Trainings Series. Each Stat’s Amore Training is approximately 90 minutes long.

Not a Member? Join!

About the Instructor

Karen Grace-Martin helps statistics practitioners gain an intuitive understanding of how statistics is applied to real data in research studies.

She has guided and trained researchers through their statistical analysis for over 15 years as a statistical consultant at Cornell University and through The Analysis Factor. She has master’s degrees in both applied statistics and social psychology and is an expert in SPSS and SAS.

Not a Member Yet?
It’s never too early to set yourself up for successful analysis with support and training from expert statisticians.

Just head over and sign up for Statistically Speaking.

You'll get access to this training webinar, 130+ other stats trainings, a pathway to work through the trainings that you need — plus the expert guidance you need to build statistical skill with live Q&A sessions and an ask-a-mentor forum.


Member Training: Dummy and Effect Coding

August 1st, 2014 by

Why does ANOVA give main effects in the presence of interactions, but Regression gives marginal effects?Stage 2

What are the advantages and disadvantages of dummy coding and effect coding? When does it make sense to use one or the other?

How does each one work, really?

In this webinar, we’re going to go step-by-step through a few examples of how dummy and effect coding each tell you different information about the effects of categorical variables, and therefore which one you want in each situation.


Note: This training is an exclusive benefit to members of the Statistically Speaking Membership Program and part of the Stat’s Amore Trainings Series. Each Stat’s Amore Training is approximately 90 minutes long.

Not a Member? Join!

About the Instructor

Karen Grace-Martin helps statistics practitioners gain an intuitive understanding of how statistics is applied to real data in research studies.

She has guided and trained researchers through their statistical analysis for over 15 years as a statistical consultant at Cornell University and through The Analysis Factor. She has master’s degrees in both applied statistics and social psychology and is an expert in SPSS and SAS.

Not a Member Yet?
It’s never too early to set yourself up for successful analysis with support and training from expert statisticians.

Just head over and sign up for Statistically Speaking.

You'll get access to this training webinar, 130+ other stats trainings, a pathway to work through the trainings that you need — plus the expert guidance you need to build statistical skill with live Q&A sessions and an ask-a-mentor forum.