Sampling

Member Training: Complex Survey Sampling – An Overview

November 1st, 2013 by

Complex Surveys use a sampling technique other than a simple random sample. Terms you may have heard in this area include cluster sampling, stratified sampling, oversampling, two-stage sampling, and primary sampling unit.

Complex Samples require statistical methods that take the exact sampling design into account to ensure accurate results.

In this webinar, guest instructor Dr. Trent Buskirk will give you an overview of the common sampling techniques and their effects on data analysis.


Note: This training is an exclusive benefit to members of the Statistically Speaking Membership Program and part of the Stat’s Amore Trainings Series. Each Stat’s Amore Training is approximately 90 minutes long.

Not a Member? Join!

About the Instructor

BuskirkPhotoBandW-214x300

Trent D. Buskirk, Ph.D. is the Vice President of Statistics and Methodology, Marketing Systems Group.

Dr. Buskirk has more than 15 years of professional and academic experience in the fields of survey research, statistics, as well as SPSS, SAS, and R.

Dr. Buskirk has taught for more than a decade at the University of Nebraska and Saint Louis University where he was an Associate Professor of Biostatistics in the School of Public Health.

Not a Member Yet?
It’s never too early to set yourself up for successful analysis with support and training from expert statisticians.

Just head over and sign up for Statistically Speaking.

You'll get access to this training webinar, 130+ other stats trainings, a pathway to work through the trainings that you need — plus the expert guidance you need to build statistical skill with live Q&A sessions and an ask-a-mentor forum.


Stratified Sampling for Oversampling Small Sub-Populations

June 11th, 2012 by

by Ritu Narayan

Sampling is a critical issue in any research study design. Most of us have grappled with balancing costs, time and of course, statistical power when deciding our sampling strategies.

How do we know when to go for a simple random sample or to go for stratification or for clustering? Let’s talk about stratified sampling here and one research scenario when it is useful.

One Scenario for Stratified Sampling

Suppose you are studying minority groups and their behavior, say Yiddish speakers in the U.S. and their voting.  Yiddish speakers are a small subset of the US population, just .6%. (more…)


5 Reasons to Run Sample Size Calculations Before Collecting Data

September 9th, 2011 by

Most of us run sample size calculations when a granting agency or committee requires it.  That’s reason 1.

That is a very good reason.  But there are others, and it can be helpful to keep these in mind when you’re tempted to skip this step or are grumbling through the calculations you’re required to do.

It’s easy to base your sample size on what is customary in your field (“I’ll use 20 subjects per condition”) or to just use the number of subjects in a similar study (“They used 150, so I will too”).

Sometimes you can get away with doing that.

However, there really are some good reasons beyond funding to do some sample size estimates. And since they’re not especially time-consuming, it’s worth doing them. (more…)