There are many effect size statistics for ANOVA and regression, and as you may have noticed, journal editors are now requiring you include one.
Unfortunately, the one your editor wants or is the one most appropriate to your research may not be the one your software makes available (SPSS, for example, reports Partial Eta Squared only, although it labels it Eta Squared in early versions).
Luckily, all the effect size measures are relatively easy to calculate from information in the ANOVA table on your output. Here are a few common ones: (more…)
Oh so many years ago I had my first insight into just how ridiculously confusing all the statistical terminology can be for novices.
I was TAing a two-semester applied statistics class for graduate students in biology. It started with basic hypothesis testing and went on through to multiple regression.
It was a cross-listed class, meaning there were a handful of courageous (or masochistic) undergrads in the class, and they were having trouble keeping (more…)
To increase power:
- Increase alpha
- Conduct a one-tailed test
- Increase the effect size
- Decrease random error
- Increase sample size
Sound so simple, right? The reality is that although these 5 ways all work (more…)
Nearly all granting agencies require an estimate of an adequate sample size to detect the effects hypothesized in the study. But all studies are well served by estimates of sample size, as it can save a great deal on resources.
Why? Undersized studies can’t find real results, and oversized studies find even insubstantial ones. Both undersized and oversized studies waste time, energy, and money; the former by using resources without finding results, and the latter by using more resources than necessary. Both expose an unnecessary number of participants to experimental risks.
The trick is (more…)