Any time you report estimates of parameters in a statistical analysis, it’s important to include their confidence intervals.
How confident are you that you can explain what they mean? Even those of us who have a solid understand of confidence intervals get tripped up by the wording.
The Wording for Describing Confidence Intervals
Let’s look at an example. (more…)
One issue with using tests of significance is that black and white cut-off points such as 5 percent or 1 percent may be difficult to justify.
Significance tests on their own do not provide much light about the nature or magnitude of any effect to which they apply.
One way of shedding more light on those issues is to use confidence intervals. Confidence intervals can be used in univariate, bivariate and multivariate analyses and meta-analytic studies.
(more…)
Sample size estimates are one of those data analysis tasks that look straightforward, but once you try to do one, make you want to bang your head against the computer in frustration. Or, maybe that’s just me.
Regardless of how they make you feel, they are super important to do for your study before you collect the data.
(more…)
Here’s a common situation.
Your grant application or committee requires sample size estimates. It’s not the calculations that are hard (though they can be), it’s getting the information to fill into the calculations.
Every article you read on it says you need to either use pilot data or another similar study as a basis for the values to enter into the software.
You have neither.
No similar studies have ever used the scale you’re using for the dependent variable.
And while you’d love to run a pilot study, it’s just not possible. There are too many practical constraints — time, money, distance, ethics.
What do you do?
(more…)
There are many rules of thumb in statistical analysis that make decision making and understanding results much easier.
Have you ever stopped to wonder where these rules came from, let alone if there is any scientific basis for them? Is there logic behind these rules, or is it propagation of urban legends?
In this webinar, we’ll explore and question the origins, justifications, and some of the most common rules of thumb in statistical analysis, like:
(more…)