Regression models

Differences Between the Normal and Poisson Distributions

December 23rd, 2016 by

The normal distribution is so ubiquitous in statistics that those of us who use a lot of statistics tend to forget it’s not always so common in actual data.

And since the normal distribution is continuous, many people describe all numerical variables as continuous. I get it: I’m guilty of using those terms interchangeably, too, but they’re not exactly the same.

Numerical variables can be either continuous or discrete.

The difference? Continuous variables can take any number within a range. Discrete variables can only be whole numbers.

So 3.04873658 is a possible value of a continuous variable, but not discrete.

Count variables, as the name implies, are frequencies of some event or state. Number of arrests, fish (more…)


Overdispersion in Count Models: Fit the Model to the Data, Don’t Fit the Data to the Model

December 21st, 2016 by

If you have count data you use a Poisson model for the analysis, right?

The key criterion for using a Poisson model is after accounting for the effect of predictors, the mean must equal the variance. If the mean doesn’t equal the variance then all we have to do is transform the data or tweak the model, correct?

Let’s see how we can do this with some real data. A survey was done in Australia during the peak of the flu season. The outcome variable is the total number of times people asked for medical advice from any source over a two-week period.

We are trying to determine what influences people with flu symptoms to seek medical advice. The mean number of times was 0.516 times and the variance 1.79.

The mean does not equal the variance even after accounting for the model’s predictors.

Here are the results for this model: (more…)


The Impact of Removing the Constant from a Regression Model: The Categorical Case

December 9th, 2016 by

Stage 2In a simple linear regression model, how the constant (a.k.a., intercept) is interpreted depends upon the type of predictor (independent) variable.

If the predictor is categorical and dummy-coded, the constant is the mean value of the outcome variable for the reference category only. If the predictor variable is continuous, the constant equals the predicted value of the outcome variable when the predictor variable equals zero.

Removing the Constant When the Predictor Is Categorical

When your predictor variable X is categorical, the results are logical. Let’s look at an example. (more…)


Member Training: The LASSO Regression Model

November 1st, 2016 by

The LASSO model (Least Absolute Shrinkage and Selection Operator) is a recent development that allows you to find a good fitting model in the regression context. It avoids many of the problems of overfitting that plague other model-building approaches.

In this Statistically Speaking Training, guest instructor Steve Simon, PhD, explains what overfitting is — and why it’s a problem.

Then he illustrates the geometry of the LASSO model in comparison to other regression approaches, ridge regression and stepwise variable selection.

Finally, he shows you how LASSO regression works with a real data set.


Note: This training is an exclusive benefit to members of the Statistically Speaking Membership Program and part of the Stat’s Amore Trainings Series. Each Stat’s Amore Training is approximately 90 minutes long.

(more…)


What is an ROC Curve?

October 14th, 2016 by

An incredibly useful tool in evaluating and comparing predictive models is the ROC curve.

Its name is indeed strange. ROC stands for Receiver Operating Characteristic. Its origin is from sonar back in the 1940s. ROCs were used to measure how well a sonar signal (e.g., from an enemy submarine) could be detected from noise (a school of fish).

ROC curves are a nice way to see how any predictive model can distinguish between the true positives and negatives. (more…)


Understanding Interaction Between Dummy Coded Categorical Variables in Linear Regression

September 2nd, 2016 by

The concept of a statistical interaction is one of those things that seems very abstract. Obtuse definitions, like this one from Wikipedia, don’t help:

In statistics, an interaction may arise when considering the relationship among three or more variables, and describes a situation in which the simultaneous influence of two variables on a third is not additive. Most commonly, interactions are considered in the context of regression analyses.

First, we know this is true because we read it on the internet! Second, are you more confused now about interactions than you were before you read that definition? (more…)