Logistic Regression

How to Get Standardized Regression Coefficients When Your Software Doesn’t Want To Give Them To You

October 26th, 2012 by

Standardized regression coefficients remove the unit of measurement of predictor and outcome variables.  They are sometimes called betas, but I don’t like to use that term because there are too many other, and too many related, concepts that are also called beta.

There are many good reasons to report them:

  • They serve as standardized effect size statistics.
  • They allow you to compare the relative effects of predictors measured on different scales.
  • They make journal editors and committee members happy in fields where they are commonly reported. (more…)

Explaining Logistic Regression Results to Non-Statistical Audiences

October 24th, 2012 by

I received an e-mail from a researcher in Canada that asked about communicating logistic regression results to non-researchers. It was an important question, and there are a number of parts to it.

With the asker’s permission, I am going to address it here.

To give you the full context, she explained in a follow-up email that she is communicating to a clinical audience who will be using the results to make clinical decisions. They need to understand the size of an effect that an intervention will provide.  She refers to an output I presented in my webinar on Probability, Odds, and Odds Ratios, which you can view free here.

Question:

I just went through the two lectures re: logistic regression and prob/odds/odds ratios. I completely understand (more…)


Generalized Ordinal Logistic Regression for Ordered Response Variables

October 5th, 2012 by

When the response variable for a regression model is categorical, linear models don’t work.  Logistic regression is one type of model that does, and it’s relatively straightforward for binary responses.

When the response variable is not just categorical, but ordered categories, the model needs to be able to handle the multiple categories, and ideally, account for the ordering.

An easy-to-understand and common example is level of educational attainment.  Depending on the population being studied, some response categories may include:

1 Less than high school
2 Some high school, but no degree
3 Attain GED
4 High school graduate

You can see how there are qualitative differences in these categories that wouldn’t be captured by years of education.  You can also see that (more…)


Confusing Statistical Term #7: GLM

August 9th, 2012 by

Like some of the other terms in our list–level and  beta–GLM has two different meanings.

It’s a little different than the others, though, because it’s an abbreviation for two different terms:

General Linear Model and Generalized Linear Model.

It’s extra confusing because their names are so similar on top of having the same abbreviation.

And, oh yeah, Generalized Linear Models are an extension of General Linear Models.

And neither should be confused with Generalized Linear Mixed Models, abbreviated GLMM.

Naturally. (more…)


Why use Odds Ratios in Logistic Regression?

June 1st, 2012 by

Odds ratios are one of those concepts in statistics that are just really hard to wrap your head around. Although probability and odds both measure how likely it is that something will occur, probability is just so much easier to understand for most of us.

I’m not sure if it’s just a more intuitive concepts, or if it’s something were just taught so much earlier so that it’s more ingrained.  In either case, without a lot of practice, most people won’t have an immediate understanding of how likely something is if it’s communicated through odds.

So why not always use probability? (more…)


How to Combine Complicated Models with Tricky Effects

July 22nd, 2011 by

Need to dummy code in a Cox regression model?

Interpret interactions in a logistic regression?

Add a quadratic term to a multilevel model?

quadratic interaction plotThis is where statistical analysis starts to feel really hard. You’re combining two difficult issues into one.

You’re dealing with both a complicated modeling technique at Stage 3 (survival analysis, logistic regression, multilevel modeling) and tricky effects in the model (dummy coding, interactions, and quadratic terms).

The only way to figure it all out in a situation like that is to break it down into parts.  (more…)