Logistic Regression

Link Functions and Errors in Logistic Regression

March 14th, 2018 by

I recently held a free webinar in our The Craft of Statistical Analysis program about Binary, Ordinal, and Nominal Logistic Regression.

It was a record crowd and we didn’t get through everyone’s questions, so I’m answering some here on the site. They’re grouped by topic, and you will probably get more out of it if you watch the webinar recording. It’s free.

The following questions refer to this logistic regression model: (more…)


What Are Nested Models?

July 28th, 2017 by

Pretty much all of the common statistical models we use, with the exception of OLS Linear Models, use Maximum Likelihood estimation.

This includes favorites like:

That’s a lot of models.

If you’ve ever learned any of these, you’ve heard that some of the statistics that compare model fit in competing models require (more…)


The Difference Between Logistic and Probit Regression

May 12th, 2017 by

One question that seems to come up pretty often is:

What is the difference between logistic and probit regression?

 

Well, let’s start with how they’re the same:

Both are types of generalized linear models. This means they have this form:

glm
(more…)


What is an ROC Curve?

October 14th, 2016 by

An incredibly useful tool in evaluating and comparing predictive models is the ROC curve.

Its name is indeed strange. ROC stands for Receiver Operating Characteristic. Its origin is from sonar back in the 1940s. ROCs were used to measure how well a sonar signal (e.g., from an enemy submarine) could be detected from noise (a school of fish).

ROC curves are a nice way to see how any predictive model can distinguish between the true positives and negatives. (more…)


The Difference Between Relative Risk and Odds Ratios

July 11th, 2016 by

Relative Risk and Odds Ratios are often confused despite being unique concepts.  Why?

Well, both measure association between a binary outcome variable and a continuous or binary predictor variable. (more…)


Pros and Cons of Treating Ordinal Variables as Nominal or Continuous

July 1st, 2016 by

There are not a lot of statistical methods designed just for ordinal variables.Stage 2

But that doesn’t mean that you’re stuck with few options.  There are more than you’d think. (more…)