In a previous post, Interpreting Interactions in Regression, I said the following:
In our example, once we add the interaction term, our model looks like:
Height = 35 + 4.2*Bacteria + 9*Sun + 3.2*Bacteria*Sun
Adding the interaction term changed the values of B1 and B2. The effect of Bacteria on Height is now 4.2 + 3.2*Sun. For plants in partial sun, Sun = 0, so the effect of Bacteria is 4.2 + 3.2*0 = 4.2. So for two plants in partial sun, a plant with 1000 more bacteria/ml in the soil would be expected to be 4.2 cm taller than a (more…)
While there are a number of distributional assumptions in regression models, one distribution that has no assumptions is that of any predictor (i.e. independent) variables.
It’s because regression models are directional. In a correlation, there is no direction–Y and X are interchangeable. If you switched them, you’d get the same correlation coefficient.
But regression is inherently a model about the outcome variable. What predicts its value and how well? The nature of how predictors relate to it (more…)
Yesterday I gave a little quiz about interpreting regression coefficients. Today I’m giving you the answers.
If you want to try it yourself before you see the answers, go here. (It’s truly little, but if you’re like me, you just cannot resist testing yourself).
True or False?
1. When you add an interaction to a regression model, you can still evaluate the main effects of the terms that make up the interaction, just like in ANOVA. (more…)
Here’s a little quiz:
True or False?
1. When you add an interaction to a regression model, you can still evaluate the main effects of the terms that make up the interaction, just like in ANOVA.
2. The intercept is usually meaningless in a regression model. (more…)
Here’s a little tip.
When you construct Dummy Variables, make it easy on yourself to remember which code is which. Heck, if you want to be really nice, make it easy for anyone else who will analyze the data or read the results.
Make the codes inherent in the Dummy variable name.
So instead of a variable named Gender with values of 1=Female and 0=Male, call the variable Female.
Instead of a set of dummy variables named MaritalStatus1 with values of 1=Married and 0=Single, along with MaritalStatus2 with values 1=Divorced and 0=Single, name the same variables Married and Divorced.
And if you’re new to dummy coding, this has the extra bonus of making the dummy coding intuitive. It’s just a set of yes/no variables about all but one of your categories.
Someone who registered for my upcoming Interpreting (Even Tricky) Regression Models workshop asked if the content applies to logistic regression as well.
The short answer: Yes
The long-winded detailed explanation of why this is true and the one caveat:
One of the greatest things about regression models is that they all have the same set up: (more…)