OptinMon 04 - Interpreting Linear Regression Coefficients

Interpreting Regression Coefficients in Models other than Ordinary Linear Regression

January 5th, 2010 by

Someone who registered for my upcoming Interpreting (Even Tricky) Regression Models workshop asked if the content applies to logistic regression as well.

The short answer: Yes

The long-winded detailed explanation of why this is true and the one caveat:

One of the greatest things about regression models is that they all have the same set up: (more…)


Confusing Statistical Terms #2: Alpha and Beta

December 11th, 2009 by

Oh so many years ago I had my first insight into just how ridiculously confusing all the statistical terminology can be for novices.

I was TAing a two-semester applied statistics class for graduate students in biology.  It started with basic hypothesis testing and went on through to multiple regression.

It was a cross-listed class, meaning there were a handful of courageous (or masochistic) undergrads in the class, and they were having trouble keeping (more…)


To Compare Regression Coefficients, Include an Interaction Term

August 14th, 2009 by

Just yesterday I got a call from a researcher who was reviewing a paper.  She didn’t think the authors had run their model correctly, but wanted to make sure.  The authors had run the same logistic regression model separately for each sex because they expected that the effects of the predictors were different for men and women.

On the surface, there is nothing wrong with this approach.  It’s completely legitimate to consider men and women as two separate populations and to model each one separately.

As often happens, the problem was not in the statistics, but what they were trying to conclude from them.   The authors went on to compare the two models, and specifically compare the coefficients for the same predictors across the two models.

Uh-oh. Can’t do that.

If you’re just describing the values of the coefficients, fine.  But if you want to compare the coefficients AND draw conclusions about their differences, you need a p-value for the difference.

Luckily, this is easy to get.  Simply include an interaction term between Sex (male/female) and any predictor whose coefficient you want to compare.  If you want to compare all of them because you believe that all predictors have different effects for men and women, then include an interaction term between sex and each predictor.  If you have 6 predictors, that means 6 interaction terms.

In such a model, if Sex is a dummy variable (and it should be), two things happen:

1.the coefficient for each predictor becomes the coefficient for that variable ONLY for the reference group.

2. the interaction term between sex and each predictor represents the DIFFERENCE in the coefficients between the reference group and the comparison group.  If you want to know the coefficient for the comparison group, you have to add the coefficients for the predictor alone and that predictor’s interaction with Sex.

The beauty of this approach is that the p-value for each interaction term gives you a significance test for the difference in those coefficients.

 


SPSS GLM or Regression? When to use each

April 23rd, 2009 by

Regression models are just a subset of the General Linear Model, so you can use GLM procedures to run regressions.  It is what I usually use.

But in SPSS there are options available in the GLM and Regression procedures that aren’t available in the other.  How do you decide when to use GLM and when to use Regression?

GLM has these options that Regression doesn’t: (more…)


Regression Models:How do you know you need a polynomial?

April 3rd, 2009 by

A polynomial term–a quadratic (squared) or cubic (cubed) term turns a linear regression model into a curve.  But because it is X that is squared or cubed, not the Beta coefficient, it still qualifies as a linear model.  This makes it a nice, straightforward way to model curves without having to model complicated non-linear models.

But how do you know if you need one–when a linear model isn’t the best model? (more…)


Testing and Dropping Interaction Terms in Regression and ANOVA models

February 26th, 2009 by

In a Regression model, should you drop interaction terms if they’re not significant?

In an ANOVA, adding interaction terms still leaves the main effects as main effects.  That is, as long as the data are balanced, the main effects and the interactions are independent.  The main effect is still telling (more…)