One of the biggest challenges that data analysts face is communicating statistical results to our clients, advisors, and colleagues who don’t have a statistics background.
Unfortunately, the way that we learn statistics is not usually the best way to communicate our work to others, and many of us are left on our own to navigate what is arguably the most important part of our work.
In this webinar, we will cover how to: (more…)
Generalized linear mixed models (GLMMs) are incredibly useful tools for working with complex, multi-layered data. But they can be tough to master.
In this follow-up to October’s webinar (“A Gentle Introduction to Generalized Linear Mixed Models – Part 1”), we’ll cover important topics like:
– Distinction between crossed and nested grouping factors
– Software choices for implementation of GLMMs (more…)
The LASSO model (Least Absolute Shrinkage and Selection Operator) is a recent development that allows you to find a good fitting model in the regression context. It avoids many of the problems of overfitting that plague other model-building approaches.
In this Statistically Speaking Training, guest instructor Steve Simon, PhD, explains what overfitting is — and why it’s a problem.
Then he illustrates the geometry of the LASSO model in comparison to other regression approaches, ridge regression and stepwise variable selection.
Finally, he shows you how LASSO regression works with a real data set.
Note: This training is an exclusive benefit to members of the Statistically Speaking Membership Program and part of the Stat’s Amore Trainings Series. Each Stat’s Amore Training is approximately 90 minutes long.
(more…)
Generalized linear mixed models (GLMMs) are incredibly useful—but they’re also a hard nut to crack.
As an extension of generalized linear models, GLMMs include both fixed and random effects. They are particularly useful when an outcome variable and a set of predictor variables are measured repeatedly over time and the outcome variable is a binary, nominal, ordinal or count variable. These models accommodate nesting of subjects in higher level units such as schools, hospitals, etc., and can also incorporate predictor variables collected at these higher levels.
In this webinar, we’ll provide a gentle introduction to GLMMs, discussing issues like: (more…)
When you have data measuring the time to an event, you can examine the relationship between various predictor variables and the time to the event using a Cox proportional hazards model.
In this webinar, you will see what a hazard function is and describe the interpretations of increasing, decreasing, and constant hazard. Then you will examine the log rank test, a simple test closely tied to the Kaplan-Meier curve, and the Cox proportional hazards model.
Note: This training is an exclusive benefit to members of the Statistically Speaking Membership Program and part of the Stat’s Amore Trainings Series. Each Stat’s Amore Training is approximately 90 minutes long.
(more…)
Despite modern concerns about how to handle big data, there persists an age-old question: What can we do with small samples?
Sometimes small sample sizes are planned and expected. Sometimes not. For example, the cost, ethical, and logistical realities of animal experiments often lead to samples of fewer than 10 animals.
Other times, a solid sample size is intended based on a priori power calculations. Yet recruitment difficulties or logistical problems lead to a much smaller sample. In this webinar, we will discuss methods for analyzing small samples. Special focus will be on the case of unplanned small sample sizes and the issues and strategies to consider.
Note: This training is an exclusive benefit to members of the Statistically Speaking Membership Program and part of the Stat’s Amore Trainings Series. Each Stat’s Amore Training is approximately 90 minutes long.
(more…)