Confusing Statistical Terms

Member Training: Confusing Statistical Terms

February 28th, 2020 by

Learning statistics is difficult enough; throw in some especially confusing terminology and it can feel impossible! There are many ways that statistical language can be confusing.

Some terms mean one thing in the English language, but have another (usually more specific) meaning in statistics.  (more…)


Same Statistical Models, Different (and Confusing) Output Terms

January 7th, 2020 by

Learning how to analyze data can be frustrating at times. Why do statistical software companies have to add to our confusion?Stage 2

I do not have a good answer to that question. What I will do is show examples. In upcoming blog posts, I will explain what each output means and how they are used in a model.

We will focus on ANOVA and linear regression models using SPSS and Stata software. As you will see, the biggest differences are not across software, but across procedures in the same software.

(more…)


What’s in a Name? Moderation and Interaction, Independent and Predictor Variables

April 14th, 2014 by

One of the most confusing things about statistical analysis is the different vocabulary used for the same, or nearly-but-not-quite-the-same, concepts.

stage 1

Sometimes this happens just because the same analysis was developed separately within different fields and named twice.

So people in different fields use different terms for the same statistical concept.  Try to collaborate with a colleague in a different field and you may find yourself awed by the crazy statistics they’re insisting on.

Other times, there is a level of detail that is implied by one term that isn’t true of the wider, more generic term.  This level of detail is often about how the role of variables or effects affects the interpretation of output. (more…)


Confusing Statistical Term #7: GLM

August 9th, 2012 by

Like some of the other terms in our list–level and  beta–GLM has two different meanings.

It’s a little different than the others, though, because it’s an abbreviation for two different terms:

General Linear Model and Generalized Linear Model.

It’s extra confusing because their names are so similar on top of having the same abbreviation.

And, oh yeah, Generalized Linear Models are an extension of General Linear Models.

And neither should be confused with Generalized Linear Mixed Models, abbreviated GLMM.

Naturally. (more…)


Confusing Statistical Term #6: Factor

April 27th, 2012 by

Factor is confusing much in the same way as hierarchical and beta, because it too has different meanings in different contexts.  Factor might be a little worse, though, because its meanings are related.

In both meanings, a factor is a variable.  But a factor has a completely different meaning and implications for use in two different contexts. (more…)


Confusing Statistical Terms #5: Covariate

November 8th, 2010 by

Stage 2Covariate is a tricky term in a different way than hierarchical or beta, which have completely different meanings in different contexts.

Covariate really has only one meaning, but it gets tricky because the meaning has different implications in different situations, and people use it in slightly different ways.  And these different ways of using the term have BIG implications for what your model means.

The most precise definition is its use in Analysis of Covariance, a type of General Linear Model in which the independent variables of interest are categorical, but you also need to adjust for the effect of an observed, continuous variable–the covariate.

In this context, the covariate is always continuous, never the key independent variable, (more…)