ANOVA

Five Extensions of the General Linear Model

April 13th, 2012 by

Generalized linear models, linear mixed models, generalized linear mixed models, marginal models, GEE models.  You’ve probably heard of more than one of them and you’ve probably also heard that each one is an extension of our old friend, the general linear model.

This is true, and they extend our old friend in different ways, particularly in regard to the measurement level of the dependent variable and the independence of the measurements.  So while the names are similar (and confusing), the distinctions are important.

It’s important to note here that I am glossing over many, many details in order to give you a basic overview of some important distinctions.  These are complicated models, but I hope this overview gives you a starting place from which to explore more. (more…)


When to leave insignificant effects in a model

April 5th, 2012 by

Stage 2You may have noticed conflicting advice about whether to leave insignificant effects in a model or take them out in order to simplify the model.

One effect of leaving in insignificant predictors is on p-values–they use up precious df in small samples. But if your sample isn’t small, the effect is negligible.

The bigger effect is  on interpretation, and really the above cases are about whether it aids interpretation to leave them in. Models do get so cluttered it’s hard to figure out what’s going on, and it makes sense to eliminate effects that aren’t serving a purpose, but even insignificant effects can have a purpose. (more…)


The Difference Between Interaction and Association

March 23rd, 2012 by

It’s really easy to mix up the concepts of association (as measured by correlation) and interaction.  Or to assume if two variables interact, they must be associated.  But it’s not actually true.

In statistics, they have different implications for the relationships among your variables. This is especially true when the variables you’re talking about are predictors in a regression or ANOVA model.

stage 1

Association

Association between two variables means the values of one variable relate in some way to the values of the other.  It is usually measured by correlation for two continuous variables and by cross tabulation and a Chi-square test for two categorical variables.

Unfortunately, there is no nice, descriptive measure for association between one (more…)


The Difference Between Eta Squared and Partial Eta Squared

December 16th, 2011 by

It seems every editor and her brother these days wants to see standardized effect size statistics reported in journal articles.

For ANOVAs, two of the most popular are Eta-squared and partial Eta-squared.  In one way ANOVAs, they come out the same, but in more complicated models, their values, and their meanings differ.

SPSS only reports partial Eta-squared, and in earlier versions of the software it was (unfortunately) labeled Eta-squared.  More recent versions have fixed the label, but still don’t offer Eta-squared as an option.

Luckily Eta-squared is very simple to calculate yourself based on the sums of squares in your ANOVA table. I’ve written another blog post with all the formulas. You can (more…)


Interpreting Interactions Between Two Effect-Coded Categorical Predictors

October 21st, 2011 by

I recently received this great question:

Question:

Hi Karen,  ive purchased a lot of your material and read a lot of your pdf documents w.r.t. regression and interaction terms.  Its, now, my general understanding that interaction for two or more categorical variables is best done with effects coding, and interactions  cont v. categorical variables is usually handled via dummy coding.  Further, i may mess this up a little but hopefully you’ll get my point and more importantly my question, i understand that

1)  given a fitted line Y = b0 + b1 x1 + b2 x2 + b3 x1*x2, the interpretation for b3 is the diff of the effect of x1 on Y, when x2 changes one unit, if x1 and x2 are cont.  ( also interpretation can be reversed in terms of x1 and x2). (more…)


The Repeated and Random Statements in Mixed Models for Repeated Measures

September 30th, 2011 by

“Because mixed models are more complex and more flexible than the general linear model, the potential for confusion and errors is higher.”

– Hamer & Simpson (2005)

Linear Mixed Models, as implemented in SAS’s Proc Mixed, SPSS Mixed, R’s LMER, and Stata’s xtmixed, are an extension of the general linear model.  They use more sophisticated techniques for estimation of parameters (means, variances, regression coefficients, and standard errors), and as the quotation says, are much more flexible.

Here’s one example of the flexibility of mixed models, and its resulting potential for confusion and error. (more…)