Most of the p-values we calculate are based on an assumption that our test statistic meets some distribution. These distributions are generally a good way to calculate p-values as long as assumptions are met.
But it’s not the only way to calculate a p-value.
Rather than come up with a theoretical probability based on a distribution, exact tests calculate a p-value empirically.
The simplest (and most common) exact test is a Fisher’s exact for a 2×2 table.
Remember calculating empirical probabilities from your intro stats course? All those red and white balls in urns? (more…)
Question: Can you talk more about categorical and repeated Time? If I have 5 waves at ages 0, 1 year, 3 years, 5 years, and 9 years, would that be categorical or repeated? Does mixed account for different spacing in time?
Mixed models can account for different spacing in time and you’re right, it entirely depends on whether you treat Time as categorical or continuous.
First let me mention that not all designs can treat time as either categorical or continuous. The reason it could go either way in your example is because time is measured discretely, yet there are enough numerical values that you could fit a line to it. (more…)
As mixed models are becoming more widespread, there is a lot of confusion about when to use these more flexible but complicated models and when to use the much simpler and easier-to-understand repeated measures ANOVA.
One thing that makes the decision harder is sometimes the results are exactly the same from the two models and sometimes the results are (more…)
Structural Equation Modelling (SEM) increasingly is a ‘must’ for researchers in the social sciences and business analytics. However, the issue of how consistent the theoretical model is with the data, known as model fit, is by no means agreed upon: There is an abundance of fit indices available – and wide disparity in agreement on which indices to report and what the cut-offs for various indices actually are. (more…)
In this video I will answer a question from a recent webinar, Random Intercept and Random Slope Models.
We are answering questions here because we had over 500 people live on the webinar so we didn’t have time to get through all the questions.
If you missed the webinar live, this and the other questions in this series may make more sense if you watch that first. It was part of our free webinar series, The Craft of Statistical Analysis, and you can sign up to get the free recording, handout, and data set at this link:
The Analysis Factor uses cookies to ensure that we give you the best experience of our website. If you continue we assume that you consent to receive cookies on all websites from The Analysis Factor.
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.