This webinar, presented by Yasamin Miller, will cover broadly survey design and planning.
It will outline the advantages and disadvantages of the various data collection modes, types of samples available to target your population, how to obtain a representative sample, and how to avoid the pitfalls of bad questionnaire design.
Note: This training is an exclusive benefit to members of the Statistically Speaking Membership Program and part of the Stat’s Amore Trainings Series. Each Stat’s Amore Training is approximately 90 minutes long.
(more…)
by Manolo Romero Escobar
General Linear Model (GLM) is a tool used to understand and analyse linear relationships among variables. It is an umbrella term for many techniques that are taught in most statistics courses: ANOVA, multiple regression, etc.
In its simplest form it describes the relationship between two variables, “y” (dependent variable, outcome, and so on) and “x” (independent variable, predictor, etc). These variables could be both categorical (how many?), both continuous (how much?) or one of each.
Moreover, there can be more than one variable on each side of the relationship. One convention is to use capital letters to refer to multiple variables. Thus Y would mean multiple dependent variables and X would mean multiple independent variables. The most known equation that represents a GLM is: (more…)
So you can’t randomize people into THAT condition? Now what?
Let’s say you’re investigating the impact of smoking on social outcomes like depression, poverty, or quality of life. Your IRB, with good reason, won’t allow random assignment of smoking status to your participants.
But how can you begin to overcome the self selected nature of smoking among the study participants? What if self-selection is driving differences in outcomes? Well, one way is to use propensity score matching and analysis as a framework for your investigation.
The propensity score is the probability of group assignment conditional on observed baseline characteristics. In this way, the propensity score is a balancing score: conditional on the propensity score, the distribution of observed baseline covariates will be similar between treated and untreated subjects.
In this webinar, we’ll describe broadly what this method is and discuss different matching methods that can be used to create balanced samples of “treated” and “non-treated” participants. Finally, we’ll discuss some specific software resources that can be found to perform these analyses.
Note: This training is an exclusive benefit to members of the Statistically Speaking Membership Program and part of the Stat’s Amore Trainings Series. Each Stat’s Amore Training is approximately 90 minutes long.
(more…)
This webinar will present the steps to apply a type of latent class analysis on longitudinal data commonly known as growth mixture model (GMM). This family of models is a natural extension of the latent variable model. GMM combines longitudinal data analysis and Latent Class Analysis to extract the probabilities of each case to belong to latent trajectories with different model parameters. A brief (not exhaustive) list of steps to prepare, analyze and interpret GMM will be presented. A published case will be described to exemplify an application of GMM and its complexity.
Finally, an alternative approach to GMM will be presented where the longitudinal model approach is linear mixed effects (also known as hierarchical linear model or multilevel modeling). The idea is the same as in GMM using growth curve modeling, mainly that the latent class membership specifies specific unobserved trajectories. These models are equivalent to GMM and are sometimes referred to heterogeneous linear mixed effects, underlining the idea that the sample may not belong to one single homogeneous population, but potentially to a mixture of distributions.
Note: This training is an exclusive benefit to members of the Statistically Speaking Membership Program and part of the Stat’s Amore Trainings Series. Each Stat’s Amore Training is approximately 90 minutes long.
(more…)
Correspondence analysis is a powerful exploratory multivariate technique for categorical variables with many levels. It is a data analysis tool that characterizes associations between levels of two or more categorical variables using graphical representations of the information in a contingency table. It is particularly useful when categorical variables have many levels.
This presentation will give a brief introduction and overview of the use of correspondence analysis, including a review of chi square analysis, and examples interpreting both simple and multiple correspondence plots.
Note: This training is an exclusive benefit to members of the Statistically Speaking Membership Program and part of the Stat’s Amore Trainings Series. Each Stat’s Amore Training is approximately 90 minutes long.
(more…)
P-values are the fundamental tools used in most inferential data analyses (more…)