guest contributer

Member Training: A Gentle Introduction to Generalized Linear Mixed Models

October 3rd, 2016 by

Generalized linear mixed models (GLMMs) are incredibly useful—but they’re also a hard nut to crack.

As an extension of generalized linear models, GLMMs include both fixed and random effects. They are particularly useful when an outcome variable and a set of predictor variables are measured repeatedly over time and the outcome variable is a binary, nominal, ordinal or count variable. These models accommodate nesting of subjects in higher level units such as schools, hospitals, etc., and can also incorporate predictor variables collected at these higher levels.

In this webinar, we’ll provide a gentle introduction to GLMMs, discussing issues like: (more…)


Member Training: Cox Regression

September 1st, 2016 by
When you have data measuring the time to an event, you can examine the relationship between various predictor variables and the time to the event using a Cox proportional hazards model.

In this webinar, you will see what a hazard function is and describe the interpretations of increasing, decreasing, and constant hazard. Then you will examine the log rank test, a simple test closely tied to the Kaplan-Meier curve, and the Cox proportional hazards model.


Note: This training is an exclusive benefit to members of the Statistically Speaking Membership Program and part of the Stat’s Amore Trainings Series. Each Stat’s Amore Training is approximately 90 minutes long.

 

(more…)


Member Training: Communicating Statistical Results: When to Use Tables vs Graphs to Tell the Data’s Story

May 1st, 2016 by

In this webinar, we’ll discuss when tables and graphs are (and are not) appropriate and how people engage with each of these media.

Then we’ll discuss design principles for  good tables and graphs and review examples that meet these principles. Finally, we’ll show that the choice between tables and graphs is not always dichotomous: tables can be incorporated into graphs and vice versa. 

Participants will learn how to bring more thoughtfulness to the process of deciding when to use tables and when to use graphs in their work. They will also learn about design principles and examples they can adopt to create better tables and graphs.


Note: This training is an exclusive benefit to members of the Statistically Speaking Membership Program and part of the Stat’s Amore Trainings Series. Each Stat’s Amore Training is approximately 90 minutes long.

(more…)


Member Training: An Introduction to Kaplan-Meier Curves

March 29th, 2016 by

Survival data models provide interpretation of data representing the time until an event occurs. In many situations, the event is death, but it can also represent the time to other bad events such as cancer relapse or failure of a medical device. It can also be used to denote time to positive events such as pregnancy. Often patients are lost to follow-up prior to death, but you can still use the information about them while they were in your study to better estimate the survival probability over time.

This is done using the Kaplan-Meier curve, an approach developed by (more…)


Five things you need to know before learning Structural Equation Modeling

March 14th, 2016 by

By Manolo Romero Escobar

If you already know the principles of general linear modeling (GLM) you are on the right path to understand Structural Equation Modeling (SEM).

As you could see from my previous post, SEM offers the flexibility of adding paths between predictors in a way that would take you several GLM models and still leave you with unanswered questions.

It also helps you use latent variables (as you will see in future posts).

GLM is just one of the pieces of the puzzle to fit SEM to your data. You also need to have an understanding of:
(more…)


Structural Equation Modeling: What is a Latent Variable?

March 7th, 2016 by

By Manolo Romero Escobar

What is a latent variable?

“The many, as we say, are seen but not known, and the ideas are known but not seen” (Plato, The Republic)

My favourite image to explain the relationship between latent and observed variables comes from the “Myth of the Cave” from Plato’s The Republic.  In this myth a group of people are constrained to face a wall.  The only things they see are shadows of objects that pass in front of a fire (more…)