Have you ever heard that “2 tall parents will have shorter children”?
This phenomenon, known as regression to the mean, has been used to explain everything from patterns in hereditary stature (as Galton first did in 1886) to why movie sequels or sophomore albums so often flop.
So just what is regression to the mean (RTM)? (more…)
Some variables are straightforward to measure without error – blood pressure, number of arrests, whether someone knew a word in a second language.
But many – perhaps most – are not. Whenever a measurement has a potential for error, a key criterion for the soundness of that measurement is reliability.
Think of reliability as consistency or repeatability in measurements. (more…)
Despite modern concerns about how to handle big data, there persists an age-old question: What can we do with small samples?
Sometimes small sample sizes are planned and expected. Sometimes not. For example, the cost, ethical, and logistical realities of animal experiments often lead to samples of fewer than 10 animals.
Other times, a solid sample size is intended based on a priori power calculations. Yet recruitment difficulties or logistical problems lead to a much smaller sample. In this webinar, we will discuss methods for analyzing small samples. Special focus will be on the case of unplanned small sample sizes and the issues and strategies to consider.
Note: This training is an exclusive benefit to members of the Statistically Speaking Membership Program and part of the Stat’s Amore Trainings Series. Each Stat’s Amore Training is approximately 90 minutes long.
(more…)
Relative Risk and Odds Ratios are often confused despite being unique concepts. Why?
Well, both measure association between a binary outcome variable and a continuous or binary predictor variable. (more…)